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VORTEX EQUATIONS: SINGULARITIES, NUMERICAL SOLUTION,
AND AXISYMMETRIC VORTEX BREAKDOWN'

Hartmut H. Bossel
Mechanical Engineering Department
University of California
Santa Barbara, California

SUMMARY

A viscous parabolic subset of the incompressible Navier-
Stokes equations, the quasi-cylindrical vortex equations, can be
used to compute vortex flows as long as their stream surface
angle remains small. At low values of a swirl parameter,
computation presents no difficulties. At high swirl wvalues,
singularities are encountered which indicate a failure of the
quasi-cylindrical approximation and "are thought to be associated
with physical axisymmetric vortex breakdown. 'Vortex breakdown'
is normally followed by a 'vortex bubble', and a 'vortex jump'

may occur farther downstream.

It is found that the quasi-cylindrical vortex equations have
an infinite number of discrete swirl-dependent singularities
whose corresponding critical swirl values depend on velocity and
circulation profile shapes. The behavior of flow (deceleration
vs. acceleration on the vortex axis) is opposite on both sides
of a singularity (i.e. at higher or lower swirl). At high swirls,
the approach to singularities can only be avoided by application
of specific external axial velocity and/or circulation gradients.
The singularities appear to correspond to the critical swirl

values of the equation of inviscid rotating flow.

The first singularity Sl is of particular significance as
it seems to correspond to the often observed axisymmetric
explosive breakdown. The physical significance of the higher
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singularities is not quite clear at present. A second important
value of the swirl parameter is So which separates flow which
decays smoothly from vortex flow which eventually breaks down.

Typical vortex flows (initially uniform axial flow, leading
edge vortex,‘trailing vortex) are computed for a wide variety of
initial swirl parameters usihg a method of weighted residuals
which expresses the velocity and circulation approximations in
terms of exponentials. The effects of external axial velocity

and circulation gradients are investigated.
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I. INTRODUCTION

1.1 Physics of the Problem

The present report presents and discusses numerical
solutions to a specific parabolic subset - applicable to quasi-
cylindrical vortex flows - of the axisymmetric incompressible _
Navier-Stokes equations. This subset can be used as a reasonable
approximation for many vortex flows occurring in technological
applications and in nature (wing vortices, rotating tubes,
swirling pipe flow, dust devils, tornados).' Solutions of the
quasi-cylindrical vortex equations are therefore of some interest
in their own right, but of even greater interest are perhaps the
conditions under which solutions cannot be obtained. In such
cases the physics of the problem are different than assumed in
the quasi-cylindrical approximation, and this subset becomes
inadequate. When this happens, the physical counterpart of the
flow under consideration most likely experiences a rapid expan-
sion or contraction of the core to violate the condition of

quasi-cylindricity.

Observations of vortex flows at high swirl do indeed show
rapid expansions and/or contractions under certain conditions.
The observed closely-~related phenomena have been lumped under
the headings of 'vortex breakdown' and 'vortex bursting', and
several explanations have been advanced. Until recently a
peculiarity of vortex flows - their extreme sensitivity to probe
insertion - has prevented the gathering of reliable experimental
data to verify these explanations. Only now, with the advent of
probeless velocity measurement using the laser Doppler anemometer,
can reliable data be collected, and theories be checked and
assigned their proper place in the overall flow picture. It
turns out - once more - that the conflicting theories are not
really in conflict after all, but that they describe different
phenomena which are indeed observed to often happen more or less

under the same circumstances.



In order to put the results of this study into the proper
physical perspective, an interpretation of 'vortex breakdown'
observations will first be made partly based on recent laser
anemometer studies which have lead to some unexpected observa-
tions. The conclusions contrast s’bme:interpretétiqus.-still to be
fgggd in the current literature.

Earlier experimental and theoretical work in the area of
concentrated vortex flows has been reviewed in Hall (1966a), and
a very comprehensive bibliography to 1967 is given in Timm _
'(1967). A review of vortex breakdown has recently been made by
Hall (1972), and a comprehensive review of confined vortex flows
is due fo Lewellen (1971). Observations of wing vortex flows
and vortex breakdown, especially on delta wings, are numerous

~ references can be found in the reviews cited. With very few
exceptions (especially Hummel 1965, McCormick et al. 1968)

these studies are qualitative. It is expected that reliable
quantitative data for wing vortex flows will become available

in the near -future with the advent of two- and three-dimensional

and rapid scanning laser Doppler anemometers.

Much useful information on the phenomenon of vortex
breakdown has come from the study of swirling flow in pipes (in
particular Harvey 1962, Sarpkaya 1971la, 1971b, Orloff 1971,
Orloff and Bossel 1971). The dye studies of Harvey and
Sarpkaya are qualitative only, and the conclusions of these
authors have been somewhat revised by the quantitative optical
velocity measurements of Orloff and Bossel. More information on
the vortex breakdown phenomenon has come from the study of flow
in a stationary cylinder with a rotating lid (Maxworthy 1967,
Vogel 1968). In the careful and comprehensive work of
Vogel quantitative data on vortex breakdown are obtained from
tracer studies. Swirling flows undergoing a rapid expansion
have been studied by Gore and Ranz (1964), Nissan and Bresan
(1961) , Potter et al. (1958), So (1967), Vonnegut (1954) and

others.



Several conflicting explanations have been advanced to
explain the sudden expansion of vortex cores, most commonly
referred to as 'vortex breakdown': the spiral instability theory
of Ludwieg (1962, 1965), the hydraulic jump analogy of Benjamin
(1962), or, in a milder form, the concept of a stationary wave
(Benjamin 1967, Leibovich 1968), and finally the explanation on
the basis of stationary continuous solutions of the Navier-Stokes
equations for swirling flow, or a proper subset thereof (Vaisey
1956, Lavan and Fejer 1966, Bossei 1967, 1969, Orloff 1971,
Orloff and Bossel 1971, Torrance and Kopecky 1971). On the
other hand, the failure of the quasi-cylindrical subset of the
Navier-Stokes equations (i.e. the failure of the quasi-cylindri-
cal approximation in regions of rapidly expanding or contracting
vortex flow) has been used by Gartshore (1963), Hall (1966b),
Bossel (1967, 1971), Mager (1971) to predict the position of
likely breakdown and the behavior of flow preceding it.

Most experimental observations seem to support the view
that the sudden expansioh of vortex cores is most often an
axisymmetric phenomenon and not the result of spiral instability.
However, according to unpublished experiments (Ludwieg 1971,
private communication), spiral instability may indeed'play a
major role in the breakdown of delta wing vortices. Other
instabilities have been identified by Sarpkaya (197l1la,b), but the
dominant role in what we know as the 'breakdown'-process appears
to be a sudden axisymmetric expansion of the core. It is for
this reason that the axisymmetric equations are studied in the
present work. Before entering into the analysis, it will be
useful to piece together a comprehensive picture of the axisym-
metric 'vortex breakdown'-process based on the most recent
guantitative data obtained through optical velocity measurements
by Orloff (1971) and Orloff and Bossel (1971). It is found that
the explanations and theories proposed so far all have their
proper place and are not really competitive. The proper range
of application will be identified. -



Consider first a vortex flow with more or less cylindrical
external stream surfaces and a high 'swirl' (some ratio of a
representative circumferential (swirl) velocity to a representa-
tive axial velocity). An adverse pressure gradient is
superimposed on the axis by the presence of an axisymmetric
obstacle (Orloff and Bossel 1971). The flow observed is then as
shown in Fig. 1.1. The flow initially approaches the obstacle in a
quasi-cylindrical manner. The velocity on the axis decreases
until a stagnation point is reached on the axis and flow has to
move outward from the axis near the stagnation point. In keeping
with traditional notation, this particular process will be called

'vortex breakdown' in the following.

There is reversed (upstream) axial flow on the downstream
side of the stagnation point. This reversed flow is part of
the flow in the ('forced') 'vortex bubble' between stagnation
point and obstacle, a closed region with practically no inter-
change of fluid with the surrounding flow. The external flow
passes over the bubble and over the rear of the obstacle. As
it passes over the rear it undergoes a 'vortex jump' in the
sense of the hydraulic jump analogy of Benjamin (1962), with a
substantial loss of axial momentum and an attendant expansion

of stream surfaces near the axis.

In Fig. 1.2 the stagnation point, and the rapid expansion .
near the axis are caused by the effect of an external pressure
gradient such as produced by a flow divergence. With a proper
favorable pressure gradient the bubble will contract downstream
and may even be more or less closed. Flows having such
(seemingly) closed 'free' vortex bubbles can either be generated
by proper shaping of an outer surface as in Fig. 1.2 (Bossel
and Orloff 1971, unpublished) or by a self-induced process
between vortex bubble and external flowfield as in the vortex
tube flows of Harvey (1962) and Sarpkaya (1971la,b). Sarpkaya
has even succeeded in generating several vortex bubbles in a

row. Just downstream of a vortex bubble a vortex jump ﬁaz
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occur, but does not appear to occur in many cases where the
bubble is smooth or repeated. Following Benjamin (1967) and
Leibovich (1968) these vortex bubbles can be viewed as solitary
waves. However, their description appears to be more straight-
forward and accessible to numerical quantitative analysis if
direct use is made of the Navier-Stokes equations or a proper
subset of these equations.

Fig. 1.3 shows another.possibility which appears to be
typical of delta wing vortex flows and some tornados. In this
case the vortex bubble foIlowing the vortex breakdown is not
closed downstream. At some distance from the breakdown point
the flow again becomes more or less cylindrical. In other flows
(on delta wings, for example) a stagnation point occasionally
does not seem to exist; there is only a swelling of the core with
an attendant decrease of velocities in the core. This situation
is depicted in Fig. 1.4; the term 'vortex bursting' should
probably be reserved for it.

Finally, if the swirl is very high in a vortex, the vortex
assumes a decidedly different columnar character where flow
dependence on axial position has essentially disappeared, and
the 'Taylor column' stretches far downstream (Fig. 1.5). This
structure is found downstream of a vortex jump or immediately
downstream of the flow entrance if the initial swirl is very
high. In keeping with accepted notation (Benjamin 1962) this
flow is termed 'subcritical' while the flow upstream of a vortex
jump would be 'supercritical'. (Stationary waves may occur in
'subcritical' flow, while in 'supercritical' flow the axial flow

is too fast, sweeping any waves downstream) .

Summarizing the experimental observations, it is obvious
that clear distinctions exist between 'vortex breakdown' and
'vortex jump', 'supercritical' and 'subcritical' flow, 'vortex
breakdown' and 'vortex burst','axisymmetric breakdown' and

nonaxisymmetric instabilities. For convenience, we have also
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vortex breakdown ™ ‘Taylor column
'forced' vortex bubble obs tacl‘é vortex jump

Fig. 1.1 Vortex breakdown,céused by presence of an obstacle
on the axis.

b Lonorelonnll, e~
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vortex breakdown
'free' vortex bubble

i

vortex jump
(may or may not occur)

Fig. 1.2 'Free' vortex breakdown with 'closed' bubble.

vortex breakdown—"

Fig. 1.3 'Free' vortex breakdown with 'open' bubble.

Fig. 1.4 Expansion of vortex core; no breakdown with free
stagnation point.




distinguished between 'free' and 'forced' vortex bubbles,

although they appear to be the result of the same basic mecha-

nism. In this report, the term 'vortex breakdown' will be uséd to
designate conditions where the quasi-cylindrical solutions become
singular and the corresponding computations fail. This includes rapid
core expansion, as in the vieinity of the first stagnation point, and

rapid core contraction.

With accurate optical velocity measurements ahead of,
around, behind, and in the vortex bubble now available (Orloff
1971, Orloff and Bossel 1971), it has become possible to test
the accuracy and applicability of numerical approaches to the
solution of the 'vortex breakdown' problem. It is found that
the quasi-cylindrical approximation can be correctly applied
upstream to a distance of the order of the bubble diameter ahead
of the stagnation point (Figs. 1.1-1.3). Flow in the neighbor-
hood of the stagnation point and in and around the bubble must
be treated by using either the full Navier-Stokes equations or
a proper approximate subset (Figs. 1.1-1.3). It was shown in
Bossel (1967) that the proper subset is the equation for
inviscid rotating flow. Numerical solutions show excellent
quantitative agreement with the measured velocity profiles with
an inaccurate description of the swirl velocity profile inside
the bubble as the only exception (Orloff and Bossel 1971). For
accurate description of the very slow flow inside the bubble,
viscous terms should be taken into account; however the exact
bubble shape and the external flow are quite obviously deter-
mined almost solely by the inviscid flowfield. The inviscid
equation of rotating flow can be applied to compute 'free' and
'forced' vortex bubbles equally well (Bossel 1967, 1969, Orloff
1971, Orloff and Bossel 1971).

A continuous solution is not possible in a region where a
vortex jump occurs; the 'flow force' concepts of Benjamin (1962)
must then be applied to join two conjugate flows. In the



obserﬁations of Orloff and Bossel (1971) the vortex jump occurs .
over a distance of approximately one bubble diameter and is

marked by very strong turbulence.

1.2 Swirl Parameter

The axisymmetric behavior of a vortex flow is very much a
function of its swirl. A swirl parameter can be defined as
the ratio of some representative (circumferential) swirl velocity
to a representative axial velocity (see Sec., III). For zero
swirl, the flow reduces to a jet or wake, depending on whether
a velocity excess or deficit exists on the axis. This jet or
wake velocity profile will ultimately decay to the freestream
velocity as the flow proceeds downstream. The same is true for
small and medium amounts of swirl, until the swirl velocity and
axial velocity reach comparable magnitudes. At higher swirl
parameters, the asymptotic approach to freestream conditions
is replaced by deceleration of the flow on the axis until a
stagnation point and subsequent 'breakdown bubble', or at least
a swelling of the core appear. All other conditions being
equal, there is obviously one particular swirl parameter value
which divides a vortex flow which decays in a wake-like manner
from another which 'breaks down'. This dividing swirl parameter
is designated So in the following; it is a function of the

vortex velocity profiles,

Axisymmetric vortex breakdown is a completely symmetric
phenomenon with its origin at the very axis (Sarpkaya 1971a,b,
Orloff 1971). Thus conditions on the axis must be of vital
importance in its inception. In particular, viscosity estab-
lishes rigid rotation at and near the axis. For a rigidly
rotating inviscid cylindrical slug of fluid of radius Tor
axial velocity U e and swirl velocity W at r,, a swirl parame-

ter can be defined by S = wc/ua and two important theoretical

xl
results follow:



(1) As the swirl is increased and crosses_so = /2 from
below, an initial deceleration of the core elemernt will
amplify and lead to stagnation (Bossel 1968).

(2) As_the swirl is increased further and crosses Sl = jli/z
(= 3.8317/2 = 1.9159)* from below, the character of
the solution changes from 'supercritical' (which cannot
support standing waves) to 'subcritical' (which can
support standing waves) (Fraenkel 1956). As S reaches
the values jln/2 corresponding to higher zeros of the
Bessel function Jl’ more waves appear.

It can be expected that the critical swirl values Sgr Sy
Sor v o of a viscous vortex will be a function of the vortex
velocity profiles and will be somewhat different from those for
the rigidly rotating inviscid cylindrical slug. Of particular
significance for vortex flows are So (dividing wake-type from
breakdown behavior) and Sy (beyond S1 substantial upstream
influence is possible).

1.3 Numerical Approach

Laminar incompressible steady axisymmetric vortex flows
are described by the corresponding form of the Navier-Stokes
equations. These equations can be approximated by a parabolic
viscous set, analogous to the boundary layer equations, in
regions where the stream surface angle remains small (gquasi-
cylindrical vortex flow), and by the inviscid equations of
rotating flow at and near the axis, and where stream surface
angles become large (expansion or contraction of the core)
(Bossel 1969). |

Some solutions of the inviscid set pertaining to vortex _
flows at high swirl have been presented in Bossel (1967, 1969),
Chow (1969), Orloff and Bossel (1971); here we shall now discuss

*

jll is the first zero of the Bessel function Jl;



a method of solving the parabolic viscous set and give corres-
ponding results for different swirl parameters, initial velocity
profiles, and external pressure and circulation gradients.
Since the regions of validity of the two sets partially overlap
on and near the axis, it should be possible to confirm some of
the earlier results. The parabolic system has been used before
in numerical computations by different methods (Gartshore 1963,
Hall 1965, Bossel 1967, Mager 1971). Gartshore and Mager each
used a momentum-integral approach and encountered a singularity
which they linked to the vortex breakdown phenomenon and to the
critical swirl parameter 3.8317/2 of flow in initially rigid
rotation.. The present results reinforce this view. Beyond
this critical swirl ratio, Bossel (1967) and Mager (1971) also
obtained flows which contrasted in behavior with those below

the critical swirl ratio.

The numerical method (N-parameter 'exponential series
integral method'*) to be used for the present study has
previously been outlined in Bossel (1970a, 1971). A related
method (N-parameter 'power series integral method') has earlier
been used successfully to calculate viscous vortex flows
(Bossel 1967). The methods were inspired by the success of
the Dorodnitsyn method for the calculation of boundary layers
(Dorodnitsyn 1962, Bethel 1968), especially by its aspects of
speed and accuracy. However, the Dorodnitsyn approach with its
use of Y(U) in place of U(Y) cannot be directly applied to
vortex flows where axial velocity profiles often exhibit over-
shoot and flow reversal. The present approach circumvents this
problem. The soundness of the exponential series integral
method has been demonstrated in its application to incompressi-
ble and compressible boundary layer flows (Bossel 1970a,b,

Mitra and Bossel 1971).

*
The term 'integral method' is used here to avoid the cumber-
some (but more accurate) terms 'method of weighted residuals'
or 'method of integral relations'.

10



There are good reasons for chobsing an N-parameter integral
method over a finite difference method for a study such as the
present one. Many of the open questions in this case only
require a qualitative answer, which can be obtained at minimal
computing cost by a one or two pafameter solution. If accuracy
is desired, the number of parameters is increased without any
change in the program. Results of the same detail and accuracy
as for finite difference methods can then be obtained. The
integral approach reduces the solution of partial differential
equations to solution of a set of drdinary differential equa-
tions. Well-known stable integration schemes, such as the
Runge-Kutta method, can be applied. There.is little chance of
confusing a true singularity of the set of equations to be
solved with a singularity of a finite difference scheme replacing
it. No iterations are necessary. Finally, velocities, stream
function, pressure, boundary layer thickness, shear, etc., can
all be computed simply and directly from analytical expressions

involving the parameters in the velocity approximations.

1.4 Overview

The following Section II will first describe the computa-
tional method and give an example for its accuracy and
convergence., Singularities of the equations are investigated in
Section III, and a swirl parameter is introduced. Section IV
investigates, for constant external axial velocity and circula-
tion, three vortex flows which are of particular interest to
the fluid dynamicist: (1) vortex flow with initial uniform axial
velocity, (2) vortex flow where the velocity on the axis is
initially higher than the freestream velocity (leading edge
vortex), and (3) vortex flow where the velocity on the axis is
initially lower than the freestream velocity (trailing vortex).
Representative velocity profiles and velocity distributions on
the axis as a function of distance are given. The effects of
positive or negative gradients in the external velocity and

11



circulation distribution are studied in Section V. Some
conclusions are drawn, and results are summarized in Section VI.

12



II. COMPUTATIONAL METHOD

In developing a method of weighted residuals for a problem
in two coordinates, the dependent variables in the partial
differential equations are replaced by approximating functions,
multiplied by a set of weighting functions, and then formally
integrated with respect to one coordinate. There remains a set
of ordinary differential equations in the other coordinate for
the parameters in the approximating expressions for the dependent
variables. The major task in developing the integral method is
the correct. development of the coefficienﬁs in the set of ofdinary
differential equations - not a difficult task, but one requiring
careful bookkeeping. The FORMAC* method has been used in a case
of comparable complexity to relegate this task to the computer
(Mitra 1970). The ordinary differential equations are solved for
the parameters by any of a number of standard methods. Knowledge
of the parameters at each step permits calculation of the depen-
dent variables and of a number of related variables of interest.

2.1 Governing Equations

The independent and dependent variables are introduced in
Fig. 2.1. The dimensional equations for incompressible viscous

quasi-cylindrical vortex flow are (Bossel 1969):

u EAY v o_
xtartr =0
w? _ 1 3p
r p or
2
w8y 8w _129p, (3w, 13u
X or p OX 5 2 r or
r
ow ow vw 32w 1l 9w W
u'a_x'+"§:?+'f'="(—'2'+f"?':2') (2.1)

or

*
FORmula MAnipulation on Computer, a method developed by IBM
for non-numerical manipulations. It uses PL-1 or FORTRAN.
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Fig. 2.1 Coordinate system and velocities.

with the boundary conditions:
atr =0: v=0, w=0, us= Uy (free)

at r > »: u - ue(x), wr = k > ke(x)

Nondimensional variables are defined as follows:

X =x/r_ Y=R/2-= Re(r2/2rcz) P = p/(pu_2/2)

U = u/u, V = YRe (v/u,) W =w/u,
where the core Reynolds number Re = umrc/v. For convenience we
define H = VR and K = WR (circulation). These quantities are
introduced into the conservation equations. The pressure P is

eliminated by cross-differentiation, and two equations remain

for U and K:
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3 -9 9K _
) 23U K2 2 52 U
8—}'{-(2YU§T+T)+Y-§F(HU—2Y5§')=O (2.2)
where ¥
- - au
H = /-3 dy
0
The boundary conditions now become:
at Y=0: H=0, K=0, U=0U (free)
ax
at Y > «: U~>Ue(X), WR=K+Ke(x)

The pressure at any point in the flow is given by

where

2.2 Integral Relations

As a first step in developing the computational method,
integral relations are derived from the two momentum equations
(2.2). In order to obtain a sufficient number of equatidns for
determination of the unknown parameters in the axial velocity
and circulation approximations to be introduced below, the
equations are multiplied by members of two sets of weighting
functions gk(Y) and fk(Y)’ respectively, and then integrated
formally in the Y-direction from zero to infinity. To facilitate
the integration, we requife 9 (0), £, (0) = finite, and g, (=),
fk(W) = 0. After integration by parts, rearrangement, and

simplification:
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'gd- fgkUK ay - ['gk'HK day - f (2g, "Y + 4g, ')K dY = 0

x .
o o
—d—f 'Y +2fY)U dé--d—ff EidY
3 ax k 3
0 0
f(f "Y2+4Yfk + 2£,)HU Y
0
f (2F. ™ ¥v3 + 14f "v2 + 20f 'Y + 4f )U AY = 0 (2.3)
k X k k .
0

2.3 Approximating and Weightigg Functions

The integration is completed with the following choices for
weighting functions and axial velocity and circulation approxi-

mations:

gk(Y) = e k=1' 2’ . . .7 N

k=1,2,oco,N+l

I
)]

£, (V)

N
(1 - &) |u_x) + z a (Xe ™Y |4y (e
n=1l

U(x,Y) aY

K(X,Y) W(X,Y)R = (1 - e oY) K, (X) + an(x)e‘no‘Y (2.4)

n=1

The external velocity and circulation Ue(x) and Ke(x) are
prescribed; the an(X), bn(x) and the velocity on the axis Uax(x)
are free parameters. Major reasons for these choices (Bossel

1970a) are the exponential character of the flows, ease of

16
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analytical integration, the fact that the approximations satisfy
the boundary conditions, and the observation that the approxi-
mations satisfy Weierstrass' approximation theorem after a
coordinate transformation of the semi-infinite region 0 < Y < =

into 1 > n > 0, with n = e ¥,

2.4 System of Ordinary Differential Equations

Introduction of the approximating expressions and the .
weighting functions (2.4) into equation (2.3) results in the
following set of ordinary differential equations for Uak and the
parameters.an(x) and bn(x): '

2 anAn,k + Z ann,k + Uaka -UeDk - KeEk - Fk

N N

-

~
]

=
N
2

(2.5)

The coefficients are given in the Appendix. Only a small part
of the coefficient calculation has to be done at each step; the
major part is done only once at the beginning of the computation.
The system (2.5) of (2N + 1) first order ordinary differential
equations is first solved (by Gaussian elimination) for the
derivative vector (dan/dx; dbn/dx; dUax/dx). A standard method
of integration then produces the a, . bn' and Uax (the Runge-
Kutta method has been used in the present work). Axial velocity
U(X,Y), circulation K(X,Y), and swirl velocity W(X,Y) follow
from relations (2.4). '

17



2.5 Initial Profiles

Initial profile parameters a s bn' and Uéx for the initial
axial velocity and circulation profiles (2.4) are required to
start the calculation. In the present study, simple exponential

profiles have been used throughout, i.e.,

: _ _ —aY -oY
Uinitial(Y) - Ue(l e ) + Uax,e
and _ _ .—oY _ . =-20Y
'Kinitial(Y) = Ke(l e ) or Ke(l- e )
Exponents o = 1, and O = k, k=1, 2, . . ., N+ 1 were used in

all of the calculations.

In the case of arbitrary profiles, the parameters a bn,
and Uax are obtained as outlined in Bossel (1970a or b). The
procedures for the axial velocity profile U(Y) and the circula-
tion profile K(Y) are identical. Thus, if U(Y¥) is the
(analytical or tabulated) profile to be approximated, UN(Y;an)
the profile approximation (with unknown parameters an), and
fk(Y) a convenient weighting function, then the N unknown

parameters a,  are obtained from the N equations

ffk(Y) {u(y) - UN(Y;an')] dy = 0
0 K
k=1,2, .. ., N

2.6 Accuracy and Convergence

Results of the present method were compared with previous
computations (Bossel 1967) using polynomials in Y in the approxi-
mating functions. For N = 2 the agreement was within 3% in the
velocity profiles. In cases where they can be compared, the.
computations appear to agree well with those of Hall (1966b)
(only a-'gualitative comparison can be made, however, since Hall

prescribes the outer stream surface shape). Critical runs have

18



been repeated with different orders N of approximatién. Figures
2.2 and 2.3 show the velocity on the axis, swirl parameter, and
profile development for a breakdown case (type 1lb) and N = 1,

2, 3, 4, and 5. There is obvious convergence as N increases.
Cases like these have typical running times on the IBM 360/75 of
5 to 15 seconds for N = 1 and 2} and 10 to 30 seconds for N = 3
to 5. All cases discussed later were run with N = 3, which
appeared to be an efficient compromise between the conflicting

demands of high accuracy and low computing time.

1.864

Ugx
04l
Si= 1.425
0.2t
o A y | ] 1 1 —J
(0] 0.01 0.02 0.03 0.04 0.05 0.06 0.0?

X

Fig. 2.2 Development of velocity on the axis and local swirl
parameter S(X) as a function of number of parameters
used, for initial swirl parameter Si = 1.425,
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Fig. 2.3 Velocity profile development as a function of number
of parameters used in the profile approximation.
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ITX. SINGULARITIES AND CRITICAL SWIRL PARAMETERS

3.1 Singularities of the Governing System

The system of ordinary differential equations (2.5) becomes
singular when the determinant of coefficients for the unknowns
a,, b, and U__ vanishes, and the right-hand side remains
nonzero. The special case when the right-hand side vanishes

also has some significance and is considered later.

‘At a particular axial position Xo the profile shapes
(relations 2.4) are determined by the local an(XO), bn(xo), and
Uax(xo). Without loss in generality we shall assume Uy = 1 and
keep only Ke as a free parameter. This amounts to investigating
a given axial velocity profile and a given circulation profile
shape at different values of external circulation K- The
condition for vanishing of the determinant of coefficients on
the left-hand side of system (2.5) is represented by a polynomial
expression of the form

N

2 n
Z 6 (k.2 =0 (3.1)
n=0

with N roots for characteristic external circulation values
(Kez). The Gn are numerical coefficients. Thus, there are N

2

distinct values of K, which lead to singularities, and for

N + o the following results obtain:

For a given axial veloeity profile and given shape of the
eirculation profile, the equations of quasi-cylindrical viscous
incompressible vortex flow (2.1) have a countably infinite set
of singularities for discrete values of external circulation,
'Ke"

It should be stressed that the singularities are a function
of the local profiles only and independent of local axial gra-
dients of external axial velocity and circulation. However, the

21



profile development itself is, of course, dependent on external

gradients.

The effect of gradients of external axial velocity Ue and
circulation Ke-(i.e. dUe/dX and dKe/dX)becomes obvious if the
special case is considered where the right~hand side of equations
(2.5) wvanishes together with the determinant of coefficients .
System (2.5) is then nonsingular. The right-hand side is a
linear function of the gradients dUe/dX and dKe/dX and the
parameters a bn’ and Uax in the axial velocity and circulation

profiles. For each profile combination (i.e. Ue’ Ke’ a, b_,

n n
Uax) a particular combination of external axial and circulation
gradients dUe/dX and dKe/dX exists for which the right-hand

side vanishes and the system (2.5) is nonsingular, i.e.:

A singularity can be avoided by application of appropriate

external axial and eirculation gradients.

This result is supported by the results of computations
for different external axial and circulation gradients described

in this report.

The two results derived above are independent of the
particular approximation and weighting functions chosen (i.e.
expressions (2.4)) since any continuous function U(Y) or K(Y)
can be represented by an infinite series of linearly independent

functions {¢_(Y)} forming a complete set.
n

It becomes evident from the analysis that the (swirl-
dependent) singularities of the quasi~cylindrical vortex equations
are different in character from the separation singularity of the
boundary layer equations. In particular, in contrast to boundary
layer solutions, there exist meaningful vortex solutions for
swirl values between the singular values, and especially for a
swirl value greater than that of the first singularity. Full
vortex computations (Secs. IVand V) have shown, however, that
these solutions will normally only persist for a finite distance,
before they are driven to the next singularity.
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3.2 Swirl Parameters

In comparing different vortex flows, Ke is not a very
meaningful parameter. Since the axisymmetric breakdown behavior
of vortex flows is evidently controlled by conditions at the
very core (Sarpkaya 197l1la,b, Orloff and Bossel 1971), a swirl
parameter is introduced which is based on core conditions, i.e.
the swirl velocity profile gradient on the axis, the axial
velocity on the axis, and the core radius R.W where the

max
swirl velocity W reaches its maximum value:

(dw/dR)ax Rw max
U

ax

S =

This definition of the swirl parameter reduces to the familiar
one S = QRC/U = Wc/U for a cylinder of fluid of radius R, in
rigid rotation @, with uniform axial velocity U. Inviscid
solutions for such flows (Fraenkel 1956) have critical values
of the swirl parameter at jln/2 = 1.9159, 3.5078, 5.0867,
6.6618, 8.2353, ..., where j1n are zeros of the Bessel function
Jl'

3.3 Singularities for Initially Uniform Axial Flow

Figure 3.1 presents the first five singularities for the

vortex profiles

U(Y) = 1 = constant

oY

K(Y) ) = s(1 - e~ %Yy /0.792

WR =K (1 - e
e

as a function of swirl parameter and order of approximation used.
This flow approximatesrigid rotation in the core. The singular-

ities were obtained by computing the derivatives én’ Bn' U_x
over a wide range of Ke' Each additional approximating term
accounts for a new singularity, as expected, while the location

of previously computed singularities is only slightly affected.
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Fig. 3.1 Singular swirl parameter values for U(Y) = 1, and

K(Y) = WR = S(1-e7Y)/0.792 as a function of order
of approximation N. (Inviscid values are for rigid
body rotation.)
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" Pig. 3.2 Magnitude of gradient of velocity on the axis as
function of swirl parameter. Uniform axial flow
U(Y) = 1, and K(Y) = WR = S(1l-e-Y)/0.792.
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Likewise, the use of different & or weighting function exponents
k has only minimal effect on the location of the lower order
singularities. Ih particular, the singularity of greatest
interest, Sl, remains practically constant. Since there is
ample evidence that this first singularity is associated with
axisymmetric vortex breakdown, computations failing at singular-
ities, and in particular at Sl’ will also be said to '"breakdown'
in the following work. The qritical swirl values jln/2 as

found from the theory of inviscid rigid rotation (Fraenkel 1956)
are also shown in Fig. 3.1, This figure also gives the swirl
parameter So dividing flow which decays smoothly (type 1la) .
from flow which is abruptly decelerated on the axis and 'breaks
down' because S, is reached (type 1lb). The theoretical
(inviscid) wvalue (Bossel 1968) for uniform flow in initially
rigid rotation is S_ = v2. The viscous value for s, is found .
from a full vortex computation (see Sec. IV). There is striking

agreement between the viscous and inviscid values for So’ Sl’

82, cee o

)

3.4 Behavior of Axial Derivatives

At each singularity, all axial derivatives jump to infinity
in magnitude and reverse signs. This results in contrasting
behavior for flows separated by a singularity. The axial
derivative of the velocity on the axis for the vortex with uni-
form axial flow is plotted in Fig. 3.2 as a function of swirl

parameter S. The singularities are very evident. Note especial-

'ly that the sign of the axial gradient reverses at each

singularity. In particular, for a swirl value below Sl' the

axial flow is decelerated in the core, while for a swirl value

S1 < 8 < 82 the axial flow is accelerated in the inner core.

3.5 Effect of Velocity Profile

The critical swirl parameters So’ Sl’ Sz, ... are functions
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of the a_, bn’ and Ue and_are therefore profile—depehdent.

U s
The exam;le giveif which approximates rigid rotation in its
inner core, appears to confirm the eérlier contention (Bossel
1967, 1968) that the behavior of viscous vortex flows is governed
‘mainly by inviscid core properties. The effect of nonuniform
initial axial flow on the critical swirl parameters is shown

in Fig. 3.3 for the family of profiles

_ _ —0Y - Y _ -aY -
U(y) = (1 e ) + Uaxe =1+ e (Uax 1)

-aY)

WR K (1 - e

K(Y) e

Flows with UaX < 1 are of the trailing vortex type, with a
velocity deficit on the axis, while flows with Uax > 1 approxi-

mate the leading edge vortex with a velocity excess on the axis.

Figure 3.3 shows the same qualitative behavior for the
various flows. The magnitudes of the critical swirl values for

R§§§§_R§§§
o+ o —

U Uax w

16r

121

/invt'd rigid rotation

Fig. 3.3 Effect of velocity profile on the critical swirl
values. U(Y) = 1 + e ¥ (Uy,~1), K(Y) = S(l-e~Y)/0.792.
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the nonuniform profiles show a profile effect: they are
consistently higher for the profile with initial axial wvelocity
deficit, and consistently lower for the profile with axial excess
near the axis. This result is to be expected. The average velocity near

the axis is most certainly higher than Uax in the trailing vortex case

due to the effect of faster flow in a neighborhood of the axis. In the case
of +the leading edge vortex, fluid surrounding the axis is slower than

Uax and the average velocity near the axis would be less. If proper
average velocities were used in the calculation of S , the lines of
critical swirl parameters would be more nearly horizontal.

Singularity analyses can be performed for any given arbi-
trary (expérimental) axial and swirl velocity profile combination
in order to obtain information on likely flow behavior, in

particular the proximity of S,. The coefficients a s b_, and

U x in an N-th order profile approximation (2.4) are fi?st
determined by the method of Bossel (1970a). The critical swirl
values are then either obtained by determining the coefficients
G, in the characteristic equation (3.1) and solving for the
first N critical Ke (or Scr), or by determining the gradients
d/dX of the a, and b ~from system (2.5) as a function of K, (or

s ).

3.6 Assessment of Breakdown Behavior

The results of this section offer several possibilities
of assessing the probable axisymmetric breakdown behavior of

vortex velocity profiles. 1In the order of increasing accuracy:
(1) Comparison of the swirl wvalue

s - (dW/dR)axRc _ (dw/dr)axr
U u
ax ax

C

with the inviscid critical values for rigid rotation, in

particular S = ¥2 (dividing stagnating (S > S,) from
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(2)

(3)

wake-type vortex flow (8 < SO)), and §; = 1.9159
(dividing supercritical (S < Sl) from subcritical
vortex flow (S > Sl)’ with a reversal of behavior at
Sl).

Comparison of the computed swirl value with the results

of Fig. 3.3.

Approximation of the velocity profiles by parameters

a s bn’ Ue’ Uax’ Ke using the method in Bossel (1970a)
for initial profile approximation. Using the approach
of the present section, the axial gradients are then
computed and the actual singularities determined by

varying K, or the swirl S.
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IV. VORTEX COMPUTATIONS FOR CONSTANT EXTERNAL AXIAL VELOCITY

AND CIRCULATION

This section presents results of vortex computations for
constant external axial velocity and circulation. Three
different initial velocity profiles were used in this and in the
following section, corresponding to initially uniform axial flow
and to flows of leading edge and trailing vortex type, respec-
tively. Diagrams of distance Xf to failure of the computation'
as function of initial swirl parameter will first be presented
for these three flow types. The development of the velocity on
the axis and of the velocity profiles will be discussed in some
detail. The results confirm the singular behavior predicted in
Sec. III.

4.1 Initial Profiles and Distance to Failure

Uniform initial axial flow

The case where the initial axial vélocity profile is uniform
while the swirl velocity profile is linear with R in the vicinity
of the axis provides a good test of the assertion that vortex
behavior is governed by the inviscid properties of the rigidly

rotating core as conditions on the axis are then identical in

both cases. Initial profiles (Burgers 1940) for this case were
U(Y) = 1 = constant
K(Y) = ¥

W(Y)R = K (1 - e

Most computations presented here were obtained for y = 1.

Y = 2 was used to test scaling effects on the results of the
computation. The differences were found to be minimal. The rela-
tionship between external circulation and initial swirl can be

computed from the initial profiles. For y =1
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(AW/dR) | R, :
S = = ,792 K /U__ = .792 K
ax © e’ Tax e

S =1.121 Ke/UaX = 1.121 Ke

Figure 4.1 presents, as a function of initial swirl para-
meter and for N = 3, the distance of successful computation
before failure occurred at Xf. This plot shows several distinct
regions separated by singular points in accordance with the
results of Sec. III. Continuous solutions could only be found
in region la, corresponding to an initial swirl parameter
S S ¥2. The characters of the solutions in the different regions
will be discussed more fully in the next section. As pointed
out in Sec. III, the computation with N = 3 only picks up the
first three singularities. The results are therefore only

accurate for S < Sz,
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Fig. 4.1 Distance to failure (at Xg) as function of initial
swirl parameter. Initially uniform axial flow.
Open circles denote failure of computation.
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Leading edge vortex

Experimental (Hummel 1965) and theoretical (Hall 1961)
results for leading edge vortex flows (as generated at the
leading edges of delta wings, for example) all show a large
excess of axial velocity near the axis over the freestream axial
velocity. It is of some interest to see what effect, if any,
this velocity excess has on the vortex behavior. The effect of
the nonuniform shape of the axial velocity profile on the

critical swirl wvalues has been discussed in Sec. IIT.
The initial velocity profiles investigated were

— -Y : _ —
U(Y) =1+ e (i.e. Uax = 2.0, Ue = 1.0)

K(Y) = W(Y)R = K_(1 - e~ Y)

The relationship between Ke and S for these profiles is

S = .792 Ke/Uax = ,792 Ke/2 = .396 Ke

This choice is not too good an approximation to the experimental
and theoretical profiles of Hummel and Hall, but it should serve

to demonstrate the effect of higher axial core velocity.

Distances to failure of the computation at Xf for N = 3
are shown in Fig. 4.2 as a function of initial swirl parameter.
The behavior is qualitatively the same as for the case of initial
uniform axial flow (Figure 4.l1). The critical swirl values are
now somewhat different from the previous case. They have been

more accurately determined, with N = 5, in Sec. III.

Tratiling vortex

The trailing vortex, as found downstream of a straight
wing, has a wake-~-like axial velocity distribution with a core
velocity smaller than the freestream velocity (Batchelor 1964,
McCormick et al., 1968). This velocity retardation near the
axis can be expected to lead to earlier vortex stagnation and
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Fig. 4.2 Distance to failure (at Xg) as function of initial
swirl parameter. Initial profiles of leading edge
vortex type. Open circles denote failure of
computation.

breakdown (see Sec. III).

The initial profile chosen was

- I § : - =
Uu(y) =1 e /2 (i.e. UaX = 0.5, Ue = 1.0)

Y

K(Y) )

H

K (1 - e
e

For these profiles, external circulation and swirl values are
related by

S = .792 Ke/Uax = ,792 Ke/O.S = 1.584 Ke

This choice appears to come fairly close to actual trailing
vortex flows (McCormick et al. 1968). '

Distances to failure of the computation at Xf for N = 3 are
shown in Fig. 4.3 as a function of the initial swirl parameter.
Again the behavior of the solutions is qualitatively the same as
for the two previous cases. The actual critical swirl parameter
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Fig. 4.3 Distance to failure (at Xf) as function of initial
swirl parameter. Initial profiles of traillng.vortex
type. Open circles denote failure of computation.

values differ somewhat from the other two cases and again are
not as accurate as those found in Sec. III for N = 5, especially

for 8 > 52.

Possibility of breakdown-stable solutions of type 2, 3, 4

9 °“ s

No breakdown-stable solutions of type 2, 3, or 4 were
found in the present investigation for constant external axial
velocity and circulation. This agrees with the results of the
singularity analysis in Sec. III where it became evident that
only specific external axial velocity and circulation gradients
can prevent flows of these types from approaching a singularity.
It will again be shown in Sec. V in several examples that
application of external axial velocity or circulation gradients
can have beneficial effects on flow development for these types.
There is some other experimental and analytical evidence
(Donaldson and Sullivan 1960) suggesting breakdown-~stable solu-
tions of the multi-layered type. '
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4.2 Velocity on the Axis

The behavior of vortex flow is different for each of the
regions la, l1b, 2, 3, ... . The most important indicator of
vortex behavior is a plot of velocity on the axis U,y VS-
distance X. The development of the velocity on the axis will
now be discussed for flows with constant external axial velocity
and circulation. Before describing in greater detail flows of
type 1 having different initial profiles, behavior of initially
uniform axial flows of the first five types will be discussed.
All results were computed with N = 3.

Behavior of initially uniform axial flows of types 1-4

Figure 4.4 presents the development of velocity on the axis
in the five regions la, 1lb, 2, 3, and 4. Each of the curves is
representative of other flows in the same region. For flows of
a given type, the character of these curves, and of the velocity

profiles, remains the same. Type la, the only breakdown-stable
4 -

3 -

2

1 1.390 1.380

/ type 1lb type la
Uax —
0 ] L ] 1 } 1 1 1 1
0.01 0.02 0.03 004 005 006 007 008 0.09 0.10
X
-1 F
7850
type 3

L L

Fig. 4.4 Development of velocity on the axis for different
flow types. Initially uniform axial flow. Open
circles denote failure points.
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flow, develops a reducc velocity on the axis which remains
approximately constant for a considerable distance before it
again approaches the freestream value. Type 1lb flow has
gradients (dUax/dX) which are always steeper than any type 1la
gradients. These gradients increase, and the computation
terminates due to excessive gradients, with Uax in the neighbor-
hood of 0.5. At the same time, the stream surface angles
suddenly increase to large positive values, indicating an
explosive behavior of the core. Gradients become larger, and
the calculation breaks down increasingly sooner, as the critical

swirl value S, is approached.

1
For swirl values greater than Sl’ solutions of type 2 are
obtained, which now show an acceleration of the velocity on the
axis. Gradients (dUax/dx) are very large for S near Sl’ but
decrease as S is increased, leading to longer calculations before
failure occurs. Failure of type 2 is an implosive one: stream
surface angles assume large negative values very quickly in the
immediate vicinity of the failure point. Gradients decrease
further with correspondingly longer resulting computations,
until the vicinity of S, is reached, where again no solutions

can be obtained.

For swirl S > S the flow is again of different type 3.

’
The velocity on the zxis now again decelerates, eventually
reaching a stagnation point on the axis. Downstream of this
point reversed flow develops on and near the axis, gradients
steepen and computation fails with explosive behavior of the
outer core. As the swirl is further increased, gradients are
again reduced, and the computations fail farther -downstream
until the vicinity of S3 is reached. No solutions can be ob-

tained in the immediate neighborhood of this point.

For swirl S > S3, the flow has once again changed its
behavior (to type 4 flow). The velocity on the axis again tends

to increase, until gradients again steepeh rapidly, leading to

35



large negative'stream surface angles in the outer core regions
(implosive behavior), and the computation fails.

As S is increased, more and more singularitiés are encoun-
tered. The velocity on the axis alternates between a deceleratihg
tendency (for odd type flow) and an accelerating tendency (for
even type flow). '

Initially uniform axial flow of type 1

Probably the only vortex flow of major physical signifi-
cance is type 1 flow. The development of its velocity on the
axis and its swirl parameter S(X) will now be given in more

detail for the vortex with initially uniform axial flow.

Figure 4.5 presents results for different choices of initial
swirl parameter S;. It also gives the swirl parameter S(X) for
two neighboring flows of type la and 1lb. A swirl parameter
value of approximately Si = 1.4 separates the smoothly decaying
vortex flows (type la: Si $ 1.4) from vortex flows which
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Fig. 4.5 Peye}opmen? of velocity on the axis as a function of
initial swirl., Initially uniform axial flow. Open
circles denote failure of the computation.
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eventually break down (type 1lb: Si 2 1.4). Note that the
theoretical inviscid value for the initial swirl value leading
to stagnation is s; > v¥2Z = 1.41 for rigid rotation (Bossel 1968).

Type la flow adjusts to an almost constant value of axial
velocity and thereafter behaves in a wake-like manner. The
swirl parameter S(X) generally decreases. The swirl still
counteracts the normal spreading of the wake and the attendant
diminishing of the axial velocity deficit; but eventually the
axial velocity deficit again decreases, and the axial and swirl

velocity profiles decay together.

Flows of type 1lb initially behave much' like those of type

la, except that their rate of decrease of Ua is steeper, and

the swirl parameter S(X) increases. Eventuafly the swirl effects
overwhelm the restoring tendencies of the wake, the drop of
velocity on the axis steepens rapidly, and the computation

fails. As an initial swirl parameter value of S; 1.8 is
approached, the computation fails increasingly sooner. No
solutions can be obtained near this point, whose theoretical
inviscid value is Si = 3.8317/2 = 1.9159 for rigid rotation

(Fraenkel 1956).

Leading edge vortex of type 1

The development of the velocity on the axis for different
initial swirl parameters Si for a vortex of leading edge type
(initially U, = 2, U, = 1) is given in Fig. 4.6. The swirl
parameter S(X) is also shown for two neighboring flows of type
la and 1lb. The behavior is qualitatively again the same as for
the vortex with initially uniform axial velocity. A swirl
parameter value of Si = 1,1 divides the smoothly decaying type
la from the breakdown type lb. This value of Si is somewhat
lower than the theoretical wvalue Sg = v2 for inviscid flow in
rigid rotation and appears to reflect the influence of the
profile shape. One would expect that the regions adjacent to

the axis, where the axial velocity is lower, would have some
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Fig. 4.6 Development of velocity on the axis as a function of
initial swirl. Initial flow of leading edge vorteg
type. Open circles denote failure of the computations.

effect on the flow behavior and would therefore tend to bring
down the critical value of 8, -

Trailing vortex of type 1

The development of velocity on the axis for different
initial swirl parameters S; for a tfailing vortex (initially
U = 0.5, Uy = 1) is piotted in Fig. 4.7. The swirl parameter
S(X) is also given for two neighboring flows of type la and 1lb.
The dividing value So of the initial swirl parameter is now
greater than v2, reflecting again the influence of the nonuni-
form initial axial velocity profile.

4.3 Velocity Profiles

Figure 4.8 presents typical velocity profiles for initially
uniform axial flow and N = 3 as they develop in the different
swirl regions. The swirl velocity profile is hardly affected,
but the axial velocity profile shows characteristic features
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which are different in each region. Axial velocity profiles for
these types, and for the initial profiles with uniform axial
velocity, and leading edge vortex and trailing vortex character

are given in more detail below.

For initially uniform axial flow a type 1 vortex always
shows a decrease of velocity on the axis while in type 2 flow,
the increase in velocity on the axis appears, as noted earlier.
In addition, flow in a layer adjacent to the core may now be
retarded, and the vortex may assume a two-layer structure.
Similarly, in type 3 flow, three layers appear: a retarded
core flow, an adjacent accelerated layer, and again, an outer
retarded layer. In type 4 flow, four similar layers appear,
with core flow being accelerated. This core structure has been
qualitatively confirmed by calculations for different numbers

of parameters N in the integral method of solution.

The velocity profile development for a smoothly decaying
type la vortex with initially uniform axial flow is shown in
Fig. 4.9. Behavior of type 1b flow is qualitatively similar up
to the failure point. The swirl velocity profile shows a
gradual decay, while the effect on the axial velocity profile
(axial velocity retardation on and near the axis) is more pro-
nounced and increases with swirl. Figures 4.10, 4.11, and 4.12
show the development of velocity profiles (y = 2) when the
initial swirl parameter Si exceeds Sl' These three cases of
types 2, 3, and 4 are representative of families of solutions
between singularities Sl and,S4. These solutions develop a
multi-layer structure, and the core flow reacts differently in
each family (i.e. acceleration or deceleration on the axis).

All of these cases eventually fail.

Figure 4.13 shows the development of the axial and swirl
velocity profiles for a (breakdown) type 1lb flow of leading edge
vortex type. Again there is a strong retarding effect on the
axial velocity on and near the axis, while the swirl velocity

profile is not greatly affected.
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Figure 4.14 presents the development of axial and swirl
velocity profiles for smoothly decaying type la flow of trailing
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Fig. 4.14 Velocity profile development for initial flow of
trailing vortex type. Type la.
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V. EFFECTS OF EXTERNAL VELOCITY AND CIRCULATION DISTRIBUTION

The strong effects of'exterhal axial pressure gradients
on vortex flows are well established experimentally (Lambourne
and Bryer 1961, Harvey 1962, Hall 1966a) aﬁd in numerical
computations (Hall 1966b, Mager 1971). A positive external
velocity gradient has an accelerating effect on the axial velo-
city on and near the axis in type 1 vortex flows, thus decreasing
the local swirl parameter and delaying or preventing breakdown.
The effects of circulation gradient are less obvious. Combined
external axial velocity and circulation effects may reinforce or
cancel each other, depending on sign and magnitude of each and
on the type of vortex flow. It will be shown here that external
axial velocity and circulation gradients have contrasting effects
on flows of different type. Such gradients can be used to
prevent vortex breakdown, at least for some distance.

The behavior of vortex flows under external velocity and
circulation gradients is of considerable interest in cases
where breakdown of vortex flows is to be prevented or induced.
Computation by methods such as the present one can indicate
what velocity and circulation gradients should be applied and

where.

5.1 Type 1 Vortex Flow

Type 1 flow is of considerable interest because it is the
most common type in applications. Leading edge and trailing
vortices on wings are usually of the breakdown-stable type la,
but may change to stagnating type lb as a result of either
higher swirl (increased wing angle of attack) or adverse pressure
gradient (negative external axial velocity and/or external

circulation gradient),

External axial velocity and circulation gradients are felt

through their effects on both the external pressure distribution
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and the swirl parameter. The Bernoulli equation for the free-

stream
2

By - Pe = (0/2) (2 + v .2+ (/0 ?)
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(p/2) (u ? + (x_/r)?)

shows the same qualitative effect of external axial velocity and
circulation gradients on the pressure gradient. There is an
amplified response of the flow on and near the axis to external
pressure gradient (see Hall 1966a, p. 69) which is confirmed by
all the present computations. Thus positive external axial
velocity and circulation gradients will partly tend to cause
increasing velocity on the axis for type 1 flow.

Flow behavior is governed by the swirl parameter S ~ Ke/Uax'

While the effect of positive external axial velocity and
circulation gradients increases Uax and decreases S, a circula-
tion gradient also increases Ke and may raise S. A positive
external velocity gradient is therefore always stabilizing in
type 1 flow, while a positive external circulation gradient

may be either stabilizing (in type la flow), or destabilizing

(in type 1b flow), depending on which effect dominates.* The
results presented here are for type 1 vortex flows with initially
uniform axial velocity. Other initial axial velocity distribu-

tions give qualjtatively the same result.

Figure 5.1 presents the results of the application of
various positive and negative external axial velocity gradients
to a type 1lb vortex flow of fixed initial swirl and with
initially uniform axial velocity. This particular flow breaks
down under zero external velocity gradient. The same qualitative

behavior is found for a type la vortex flow. The experimental

'Stabilization' is here taken to mean the prevention of axi-
symmetric vortex breakdown by avoiding any of the
singularities S1s 897 ...
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Fig. 5.1 Development of velocity on the axis as a function
of external axial velocity gradient. 1Initially
uniform axial flow of type 1lb with S; = 1.425 and
Ke = 1.8 = const.

observations (breakdown delay or avoidance through a positive
external axial velocity gradient) are confirmed, and the figure
also illustrates the significant effect which even very small
external velocity gradients can have on the velocity on the

axis. Negative velocity gradients lower the critical swirl value
and cause type 1lb flow to break down sooner. Note that a posi-
tive velocity gradient can prevent breakdown and convert a flow
from type 1lb to la, even though the initial profile would
indicate breakdown in a zero velocity gradient.

Figure 5.2 presents results of the application of different
circulation gradients to a type la vortex. The effect of a
moderate positive circulation gradient is qualitatively the same
as for a positive velocity gradient. However, the effect
reverses in type 1lb flow (Fig. 5.3). Here a positive external
circulation gradient results in earlier failure, while a nega-
tive gradient may prevent failure altogether. Note that this

reversal of the circulation gradient effect can be used to
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determine the critical value S0 separating wake-type (la) from

breakdown-type (1b) behavior.

5.2 Type 2 Vortex Flow

The effects of external axial velocity and circulation
gradients on a type 2 vortex with initialiy uniform axial flow
are illustrated in Fig. 5.4. For 2zero gradients the velocity on
the axis would accelerate, eventually resulting in implosive
failure, as noted earlier. A positive external axial velocity
gradient accelerates the increase in velocity on the axis and
the subsequent failure. A positive velocity gradient applied
farther downstream has a retarding effect, however. A negative
external axial velocity gradient initially causes a slower
increase in velocity on the axis, but subsequently the slope

begins to steepen, and (implosive) breakdown occurs earlier than

with zero external velocity gradient.
[
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Fig. 5.4 Development of velocity on the axis for type 2 flow
under different external axial velocity and circula-
tion gradients. Initially uniform axial flow.

Ug; = 1.0, Kg; = 3.0, 83 = 3.36.

- Ua = const, Ke
= const, Ke

const; — Ue = variable, Kg = const;
variable.
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‘A positive external circulation gradient hinders the
acceleration of velocity on the axis. It may even keep the
velocity on the axis approximately constant and suppress the
development of extreme velocity peaks in the axial velocity pro-
file, thus stabilizing the vortex for considerable distance.
However, in such cases, the velocity on the axis shows a
divergent oscillatory behavior, and eventual (implosive) failure
must be expected. Negative external circulation gradients lead
to further acceleration of the velocity on the axis and to
earlier failure.

5.3 Type 3 Vortex Flow

A type 3 vortex with initially uniform axial flow and zero
external gradient shows a velocity retardation on the axis which
leads to eventual stagnation there and an inner region of
reversed axial flow surrounded by an annular region where the
axial velocity exceeds the freestream velocity. Failure
eventually results. Figure 5.5 presents the results of external

axial velocity and circulation gradients on this flow.

A positive external axial velocity gradient causes further
deceleration of the velocity on the axis and an earliexr failure.
A negative gradient accelerates the velocity on the axis and

may retard failure for a significant distance.

A positive external circulation gradient has the same effect
as a positive velocity gradient, and it usually leads very
quickly to a drop in the velocity on the axis and to failure. A
negative external circulation gradient, if strong enough, will
accelerate the velocity on the axis and lead to implosive

fajilure.

5.4 Type 4 Vortex Flow

A type 4 vortex with initially uniform axial flow and zero external

axial velocity or circulation gradients shows increasing velocity
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on the axis and, eventually, implosive failure of the inner
core. The effect of applied external axial velocity and

circulation gradients is shown in Fig. 5.6.

A positive external axial velocity gradient initially causes
slower growth, or deceleration, of the velocity on the axis
before UaX again rises steeply and failure occurs. A negative
external axial velocity gradient, while steepening the rise in
velocity on the axis, may retard failure for a considerable

distance.

A positive external circulation gradient can stabilize
the flow for some distance. Again, however, a divergent
oscillation appears in the velocity on the axis, leading to
eventual failure. A negative external circulation gradient
leads to quick acceleration of the velocity on the axis and to

earlier failure.
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Fig. 5.6 Develcopment of velocity on the axis for type 4 flow
under different external axial velocity and circula-
tion gradients. Initially uniform axial flow.

Ue; = 1.0, Ke; = 15.0, Sj = 16.81.
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5.5 Avoidance of Singularities

Table 5.1 summarizes the results of subsections 1 through 4.
Note that the effects of gradients superimpose on the result for
zero gradients, and that the net result may be an initial
decrease and later increase in velocity on the axis, for example
(as in some cases 4 with a positive external axial velocity
gradient) .

Material presented here has shown that (1) the core flow is
mainly responsible for eventual failure, and that (2) the core
flow is easily influenced by external flow conditions. It is
therefore obviously possible to influence the development of
all vortex types by application of external axial velocity or
circulation gradients. A question of practical importance is
whether such gradients can be used to stabilize vortex flows
which are initialiy of unstable type. The singularity analysis
of Sec. III indicates that this should be possible.
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Table5.1

Behavior of Vortex Flows

Separating swirl parameter 0 s Sl 52 83

Type (uniform initial
axial £low) la I ib 2 3 4

Initial development for zero I
external axial velocity and

circulation gradients: |
Velocity on axis decre1ses increases decreases increases

Positive external axial
velocity gradient causes
additional acceleration acceleration decel. deceleration
| {(later:
deceleration)

I
(Modest) positive external
circulation gradient causes |
additional accel. decel. deceleration decel. deceleration

Permanent stabilization of flow initially of type 1b by
external axial velocity or circulation gradients can be achieved,
as evidenced by Fig. 5.3 and supported by experimental evidence.
As a further example, Fig. 5.7 demonstrates the result of
application of a very small positive external axial velocity
gradient on initially breakdown-unstable type 1lb vortex flow.

The gradient was applied at XO in the immediate wvicinity of
the failure point, transforming the vortex into a breakdown=

stable la type.

It has already been said (Sec. I) that application of the
parabolic_system (1) to subcritical vortex flow (S > Sl) is open
to criticism, but results are nevertheless believed to describe
trends correctly. The following discussion of behavior of flows
in the subcritical region is based on the parabolic system and

refers to behavior of corresponding solutions.

Since the parabolic system exhibits singularities (Sl, 82’
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Fig. 5.7 Prevention of breakdown of type 1lb flow by application
of a small positive external axial velocity gradient
beginning at Xp. Initially uniform axial flow,

Si = 1.402.

SB’ etc.) it will not be possible to go .from one flow type to
another without failure of the computation. In particular, it
will not be possible to go from type 2, 3, or 4 flow to break-
down-stable type la flow without computational failure.
Stabilization within a given flow type by application of external
axial velocity and/or circulation gradients is another matter.
Failure may be avoided for a considerable distance; and
permanent stabilization appears possible by application of
specific external axial velocity and circulation gradients

(Sec. III). In applications, stable vortex flows are usually
required only over finite distances, and application of favor-
able external axial velocity or circulation gradients can result
in retarding failure for a sufficient distance, as shown in
previous subsections.

Stable multi-layer vortex flows of high swirl S > S, do
exist in nature (certain tornados and water spouts) and can be
generated in the laboratory (Rosenzweig, Ross, Lewellen 1962). .
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Their correct and fuil treatment, beyond establishing general
trends, appears to require more than a solution of the parabolic
system (2.1).
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VI. CONCLUSIONS

The computation of viscous quasi-cylindrical vorte# flows
at low swirl values does not present any particular difficulities
and can be handled by methods which are only slightly more
complicated than comparable methods of boundary layer computa-
tion. Computational difficulties arise at high swirl values
due to the appearance of swirl- and profile-dependent singulari-
ties which indicate a failure of the quasi-cylindrical
approximation and appear to correspond to physical axisymmetric

'vortex breakdown'.

On the basis of recent optical velocity measurements in
vortex breakdown flows, a distinction has been made in this
report in particular between 'vortex breakdown', 'vortex jump',
and the 'vortex bubbles' assocated with vortex breakdown. While
the vortex breakdown and vortex bubble flow must be computed by
using the (elliptic) Navier-Stokes equation or the correct
(inviscid) subset thereof, the flow approaching the breakdown
can be computed by the (parabolic) quasi-cylindrical vortex
equations used in this report. This set has been shown to have
an infinite number of discrete singularities. A 'vortex jump'
in the sense of Benjamin's (1962) hydraulic jump analogy may
occur downstream of the vortex breakdown and vortex bubble. A
solution in the jump region must include a proper matching

condition between two conjugate flows.
The present report has presented

(1) an accurate and efficient method for the computation
of viscous incompressible quasi-cylindrical axisym-

metric steady vortex flow,

(2) a method for obtaining the singular swirl values
for a given vortex velocity profile combination
(axial velocity profile and swirl velocity profile,

or circulation profile),
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(3) results of vortex computations for a wide range of
swirl parameters, initial profiles, and external

axial velocity and circulation gradients.

The numerical method of integration of the vortex equations
is an application of the method of weighted residuals. The
present method uses exponentials in both the approximating
expressions for axial velocity and circulation and as weighting
functions. It is formulated for arbitrary N and can produce
quick qualitative studies for N = 1 or 2, or more accurate
results for N > 2. The results presented were for N = 3.
Computation of a multitude of vortex flows has been efficient
and virtually trouble-free. In exploratory investigations such
as this one and in more detailed analyses of flows, the use of
N-parameter integral methods appears to have distinct advantages
and much potential. The singularities of a given vortex velo-
city profile combination were found by introducing its describing
parameters into the set of equations for the parameter gradients
and determining the swirl parameters for which the system

becomes singular (and the gradients infinite).
Major results of the investigation were as follows:

(1) The equations of viscous quasi-cylindrical incompréssible
vortex flow have an infinite number of discrete singularities.
These singularities are best categorized in terms of the swirl
parameter of an equivalent cylinder of fluid in rigid rotation.
For given vortex velocity profiles, the singular swirl parameter
values can be computed to determine flow behavior, or results

such as the present can be used as guidelines.

(2) The singular swirl parameters Sl’ SZ’ . . . appear to
correspond to the critical values jln/2 of the swirl parameter
in the solution of the equation of inviscid flow with initial
rigid rotation. (The regions of validity of the viscous and
inviscid sets overlap at and near the axis, but the viscous

quasi-cylindrical set becomes invalid where stream surfaces
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expand or contract rapidly.) The exact values of_Sl, Sz, « . e

are profile-dependent.

(3) At each singulafity,'all derivatives become infinite in
magﬁitude and reverse their signs. The result is contrasting
behavior of vortex flows on both sides of the singularity. 1In
particular, as the first singularity Sl is crossed from below
(increasing swirl parameter), the tendency to. deceleration of
the velocity on the axié (and ~expansion of stream surfaces)

changes to one of acceleration (and contraction).

(4) For swirl parameters less than a dividing value S0 < Sl’
vortex flows show smooth viscous decay of all velocity profiles
to the surfounding freestream velocity (type la). For swirl
parameters greater than Sqor increasingly rapid deceleration on
the axis develops, the swirl paramter S$(X) increases further,
and the computation fails when the singularity S(X) = 84 is
reached (type 1b). SO is profile-dependent and appears to
correspond to the dividing value Sq = Y2 for inviscid flow in

initially rigid rotation.

(5) External gradients of axial velocity or circulation can
affect the swirl parameter S(X) and corresponding flow behavior
by either speeding the approach to a singularity or by avoiding
it altogether. In particular, breakdown-prone flows of type 1lb
with S(X) > So can be transformed to type la, which will not
break down. At the dividing point So' the effect of an external

circulation gradient reverses.

(6) Each new singularity first enters at the axis and spreads
outward as S 1is increased. This leads to alternately decelera-
ting and accelerating layers in the axial flow profiles. Thus
for S3; < 8 <8, (type 4 flow), four layers exist: accelerating
core-flow, adjacent decelerating layer, an accelerating layer
next, and a decelerating outer layer. It does not appear that
breakdown-stable vortex configurations are possible under these

conditions for S > So’ unless external axial velocity and
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circulation gradients are applied..

(7) - The singularities are coupled with explosive ot implosive
expansion, respective contraction of the stream surfaces, and
the parabolic viscous subset of the Navier-Stokes equations used
in the present work becomes invalid and should be replaced by
the inviscid equations of rotating flow or by the full Navier-
Stokes equations very close to and at the singularities (Bossel
1969). These sets permit continuous solutions for all S. The
results presented here are valid almost to the point of
computational failure in most cases since stream surface angles
remain of the order of a few degrees for typical core Reynolds

numbers of order 104.

(8) No gqualitative difference exists in the behavior of flows
of same type but having different velocity profiles (i.e.
uniform initial axial flow, leading -edge vortex, trailing vortex).
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APPENDIX

Coefficients in the ordinary differential equations (2.5):
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N

B o T 2 2091,4 * UeQ,5 F UaxQ 6
=1
N

Fk = z bnTl,k-+ KeTZ,k
n=1

These coefficients involve present values of the parameters
a, b, and of U , U, and K . They must therefore be calcula-
n n ax e e _ _
ted anew at each step. However, the numbers Q, S, T, S, and T
are constants which are determined only once at the beginning
of the computation. It is convenient to define them in terms
of other constants Z, P, and R. The following numbers are all

for given % and n. The index k runs from 1 to N + 1.

Let
_ -1
Z1,1 T 9
_ -1
Z2,l = (ck + )
_ -1
Z3,l = (ck + 2a)
B -1
Z4,l = (ok + no)
7 = [0, + (n + l)a]—l
5,1 k
7 = J[o, + (n + 2)(1]_1
6,1 k
Z = [o, + (n + Z)a]—l
7,1 k
— -1
Z8,1 = [c:rk + (n + 2 + 1l)al
z = [o, + (n + & + 2)(!]—1
9,1 k
_ -1
ZlO,l = [ok + %0]
i/ = [o. + (& + o]+
11,1 k
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Then

m,l
= Z
Qm,2
Z
- 5,m
Qm,3
Z
= “10,m
Qm,4
Z
= l,m
Qm,5
Z
= 2,m
Qm,G
Z
- “11,m
Qm,7
VA
= “2.m
Qm,8
Z
= 3,m
Qm,9
=
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-1
+ 2)al
[ok + (2

3
23 1%i,1
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32; 3% 1 J

8,m 9,m
[4
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4
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- le,m
222 n + ZB,m
4
Z3,m
= Z12.m
Z3,m
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Z Y/[{n + 1)
+ 9,m
- Z m
Zg m 11, N
t 29 m % %11,m ,
14
0,m
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Then

- Z + ZG,m)/[(n + 1)al

(Zl,m =~ Z5.m 2,m
+ 2y L h Ty b By T zslm)/(na)'
(Z2,m - Z6,m)/[(n + 1)al] + (_Zz,m + Z5,m)/(na)
(Zyo,m = 2Z11,m * Z12,m 7% 7 Z10,me1 t Z11,mH1
(Zyom ™ 2%3,m * %3,0)7% 7 %1 me1 T Z2,mel
(ZZ,m B Z3,m)a - Z2,m+l
“Z10,m * 2%211,m ~ %12,m /"
(_Zl,m + 2Z2,m - Z3,m)/a
(Z3,m - Zz,m)/“
20,0 49, . + 0© 2R - 40. R + 2R, .
x93, 2,i T % Rs, xR2,1 1,i
Ql, +Gle,1 i=1,2, .. .9
-20 3P + l4o 2P - 200, P + 4P. .
x Fa, x ©3, xF2, 1,i
-20k2P2’ + 40Py o i=1,2,3
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